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Abstract. In this paper we investigate the image of the l-adic represen-
tation attached to the Tate module of an abelian variety over a number
field with endomorphism algebra of type I or II in the Albert classifica-
tion. We compute the image explicitly and verify the classical conjectures
of Mumford-Tate, Hodge, Lang and Tate for a large family of abelian va-
rieties of type I and II. In addition, for this family, we prove an analogue
of the open image theorem of Serre.
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1. Introduction.
Let A be an abelian variety defined over a number field F. Let l be an odd
prime number. In this paper we study the images of the l-adic representation
ρl : GF −→ GL(Tl(A)) and the mod l representation ρl : GF −→ GL(A[l]) of
the absolute Galois group GF = G(F̄ /F ) of the field F, associated with the
Tate module, for A of type I or II in the Albert classification list cf. [M]. In
our previous paper on the subject cf. [BGK], we computed the images of the
Galois representations for some abelian varieties with real (type I) and complex
multiplications (type IV) by the field E=EndF (A) ⊗ Q and for l which splits
completely in the field E loc. cit., Theorem 2.1 and Theorem 5.3.

In the present paper we extend results proven in [BGK] to a larger class (cf.
Definition of class A below) of abelian varieties which includes some varieties
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with non-commutative algebras of endomorphisms, and to almost all prime
numbers l. In order to get these results, we had to implement the Weil re-
striction functor RL/K for a finite extension of fields L/K. In section 2 of the
paper we give an explicit description of the Weil restriction functor for affine
group schemes which we use in the following sections. In a very short section
3 we prove two general lemmas about bilinear forms which we apply to Weil
pairing in the following section. Further in section 4, we collect some auxiliary
facts about abelian varieties. In section 5 we obtain the integral versions of the
results of Chi cf. [C2], for abelian varieties of type II and compute Lie algebras
and endomorphism algebras corresponding to the λ-adic representations related
to the Tate module of A. In section 6 we prove the main results of the paper
which concern images of Galois representations ρl, ρl ⊗Ql : GF → GL(Vl(A)),

the mod l-representation ρl and the associated group schemes Galgl , Galgl and

G(l)alg, respectively.

The main results proven in this paper concern the following class of abelian
varieties:

Definition of class A.
We say that an abelian variety A/F, defined over a number field F is of class
A, if the following conditions hold:

(i) A is a simple, principally polarized abelian variety of dimension g
(ii) R = EndF̄ (A) = EndF (A) and the endomorphism algebraD = R⊗ZQ,

is of type I or II in the Albert list of division algebras with involution
(cf. [M], p. 201).

(iii) the field F is such that for every l the Zariski closure Galgl of ρl(GF ) in
GL2g/Ql is a connected algebraic group

(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d2 = [D : E].

Let us recall the definition of abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201. Let E ⊂ D =
EndF̄ (A) ⊗Z Q be the center of D and E be a totally real extension of Q of
degree e. Abelian varieties of type I are such that D = E. Abelian varieties
of type II are those for which D is an indefinite quaternion algebra with the
center E, such that D ⊗Q R ∼=

∏e
i=1M2,2(R).

We have chosen to work with principal polarizations, however the main results
of this paper have their analogs for any simple abelian variety A with a fixed
polarization, provided A satisfies the above conditions (ii), (iii) and (iv). The
most restrictive of the conditions in the definition of class A is condition (iv) on
the dimension of the variety A.We need this condition to perform computations
with Lie algebras in the proof of Lemma 5.33, which are based on an application
of the minuscule conjecture cf. [P]. Note that due to results of Serre, the
assumption (iii) is not very restrictive. It follows by [Se1] and [Se4] that for an
abelian variety A defined over a number field K, there exists a finite extension
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The Image of l-Adic Galois Representations 37

Kconn/K for which the Zariski closure of the group ρl(GKconn) in GL is a
connected variety for any prime l. Hence, to make A meet the condition (iii),
it is enough to enlarge the base field, if necessary. Note that the field Kconn

can be determined in purely algebraic terms, as the intersection of a family of
fields of division points on the abelian variety A cf. [LP2], Theorem 0.1.

Main results

Theorem A. [Theorem 6.9]
If A is an abelian variety of class A, then for l ≫ 0, we have equalities of group
schemes:

(Galgl )′ =
∏

λ|l

REλ/Ql
(Sp2h)

(G(l)alg)′ =
∏

λ|l

Rkλ/Fl
(Sp2h),

where G′ stands for the commutator subgroup of an algebraic group G, and
RL/K(−) denotes the Weil restriction functor.

Theorem B. [Theorem 6.16]
If A is an abelian variety of class A, then for l ≫ 0, we have:

ρl(G
′
F ) =

∏

λ|l

Sp2h(kλ) = Sp2h(OE/lOE)

ρl
(

G′
F

)

=
∏

λ|l

Sp2h(Oλ) = Sp2h(OE ⊗Z Zl),

where G′
F is the closure of G′

F in the profinite topology in GF .

As an application of Theorem A we obtain:

Theorem C. [Theorem 7.12]
If A is an abelian variety of class A, then

Galgl =MT (A)⊗Ql,

for every prime number l, where MT (A) denotes the Mumford-Tate group of
A, i.e., the Mumford -Tate conjecture holds true for A.

Using the approach initiated by Tankeev [Ta5] and Ribet [R2], futher developed
by V.K. Murty [Mu] combined with some extra work on the Hodge groups in
section 7, we obtain:
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Theorem D. [Theorems 7.34, 7.35]
If A is an abelian variety of class A, then the Hodge conjecture and the Tate
conjecture on the algebraic cycle maps hold true for the abelian variety A.

In the past there has been an extensive work on the Mumford-Tate, Tate and
Hodge conjectures for abelian varieties. Special cases of the conjectures were
verified for some classes of abelian varieties, see for example papers: [Ab], [C2],
[Mu], [P], [Po], [R2], [Se1], [Se5], [Ta1], [Ta2], [Ta3]. For an abelian variety
A of type I or II the above mentioned papers consider the cases where A is
such that End(A)⊗Q is either Q or has center Q. The papers [Ta4], [C1] and
[BGK] considered some cases with the center larger than Q. For more complete
list of results concerning the Hodge conjecture see [G]. In the current work we
prove the conjectures in the case when the center of End(A)⊗Q is an arbitrary
totally real extension of Q. To prove the conjectures for such abelian varieties
we needed to do careful computations using the Weil restriction functor.

Moreover, using a result of Wintenberger (cf. [Wi], Cor. 1, p.5), we were able
to verify that for A of class A, the group ρl(GF ) contains the group of all the
homotheties in GLTl(A)(Zl) for l ≫ 0, i.e., the Lang conjecture holds true for
A cf. Theorem 7.38.

As a final application of the method developed in this paper, we prove an
analogue of the open image theorem of Serre cf. [Se1] for the class of abelian
varieties we work with.

Theorem E. [Theorem 7.42]
If A is an abelian variety of class A, then for every prime number l, the image
ρl(GF ) is open in the group CR(GSp(Λ, ψ))(Zl) of Zl-points of the commutant
of R=EndA in the group GSp(Λ, ψ) of symplectic similitudes of the bilinear
form ψ : Λ × Λ −→ Z associated with the polarization of A. In addition, for
l ≫ 0 we have:

ρl(G′
F ) = CR(Sp(Λ, ψ))(Zl).

As an immediate corollary of Theorem E we obtain that for any A of class A

and for every l, the group ρl(GF ) is open in Galgl (Zl) (in the l-adic topology),

where Galgl is the Zariski closure of ρl(GF ) in GL2g/Zl. cf. Theorem 7.48.
Recently, the images of Galois representations coming from abelian varieties
have also been considered by A.Vasiu (cf. [Va1],[Va2]).

2. Weil restriction functor RE/K for affine schemes and Lie al-
gebras.
In this section we describe the Weil restriction functor and its basic properties
which will be used in the paper c.f. [BLR], [V1], [V2, pp. 37-40], [W1] and
[W2, pp. 4-9]. For the completeness of the exposition and convenience of
the reader we decided to include the results although some of them might be
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The Image of l-Adic Galois Representations 39

known to specialists. Let E/K be a separable field extension of degree n. Let
{σ1, σ2, . . . , σn} denote the set of all imbeddings E → Eσi ⊂ K fixingK. Define
M to be the composite of the fields Eσi

M = Eσ1 . . . Eσn .

Let X = [x1, x2, . . . xr] denote a multivariable. For polynomials fk = fk(X) ∈
E[X], 1 ≤ k ≤ s, we denote by I = (f1, f2, . . . , fs) the ideal generated by
the fk’s and put Iσi = (fσi

1 (X), fσi

2 (X), . . . , fσi
s (X)) for any 1 ≤ i ≤ n. Let

A = E[X]/I. Define E-algebras Aσi and A as follows:

Aσi = A⊗E,σi
M ∼= M [X]/ IσiM [X],

A = Aσ1 ⊗M · · · ⊗M Aσn .

Let Xσ1 , . . . , Xσn denote the multivariables

Xσi = [xi,1, xi,2, . . . , xi,r]

on which the Galois group G = G(M/K) acts naturally on the right. Indeed
for any imbedding σi and any σ ∈ G the composition σi ◦ σ, applied to E
on the right, gives uniquely determined imbedding σj of E into K, for some
1 ≤ j ≤ n. Hence we define the action of G(M/K) on the elements Xσi in the
following way:

(Xσi)σ = Xσj .

We see that
A ∼= M [Xσ1 , . . . , Xσn ]/ (I1 + · · ·+ In),

where Ik =M [Xσ1 , . . . , Xσn ]I(k) and I(k) = (fσk

1 (Xσk), . . . , fσk
s (Xσk)), for any

1 ≤ k ≤ n.

Lemma 2.1.
A
G
⊗K M ∼= A.

Proof. Let α1, . . . , αn be a basis of E over K. It is clear that

n
∑

i=1

ασi

j X
σi ∈ A

G
.

Since [ασi

j ]i,j is an invertible matrix with coefficients in M, we observe that

Xσ1 , . . . , Xσn are in the subalgebra of A generated by M and A
G
. But

Xσ1 , . . . , Xσn and M generate A as an algebra. �

Remark 2.2. Notice that the elements
∑n
i=1 α

σi

j X
σi for j = 1, . . . , n generate

A
G
as a K-algebra. Indeed if C denotes the K-subalgebra of A

G
generated by

these elements and if C were smaller than A
G
, then C ⊗KM would be smaller

than A
G
⊗K M, contrary to Lemma 2.1.
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Definition 2.3. Put V = specA, andW = specA
G
.Weil’s restriction functor

RE/K is defined by the following formula:

RE/K(V ) =W.

Note that we have the following isomorphisms:

W ⊗K M = spec (A
G
⊗K M) ∼= specA ∼=

spec (Aσ1 ⊗M · · · ⊗M Aσn) ∼= (V ⊗E,σ1
M)⊗M · · · ⊗M (V ⊗E,σn

M),

hence

RE/K(V )⊗K M ∼= (V ⊗E,σ1
M)⊗M · · · ⊗M (V ⊗E,σn

M).

Lemma 2.4. Let V ′ ⊂ V be a closed imbedding of affine schemes over E. Then
RE/K(V ′) ⊂ RE/K(V ) is a closed imbedding of affine schemes over K.

Proof. We can assume that V = spec (E[X]/I) and V ′ = spec (E[X]/J) for two
ideals I ⊂ J of E[X]. Put A = E[X]/I and B = E[X]/J and let φ : A→ B
be the natural surjective ring homomorphism. The homomorphism φ induces
the surjective E-algebra homomorphism

φ : A→ B

which upon taking fix points induces the K-algebra homomorphism

(2.5) φ
G

: A
G
→ B

G
.

By Remark 2.2 we see that B
G

is generated as a K-algebra by elements
∑n
i=1 α

σi

j X
σi (more precisely their images in B

G
). Similarly A

G
is generated as

a K-algebra by elements
∑n
i=1 α

σi

j X
σi (more precisely their images in A

G
). It

is clear that φ
G
sends the element

∑n
i=1 α

σi

j X
σi ∈ A

G
into

∑n
i=1 α

σi

j X
σi ∈ B

G
.

Hence φ
G

is onto. �

Let α1, . . . , αn be a basis of E over K and let β1, . . . , βn be the corresponding
dual basis with respect to TrE/K . Define block matrices:

A =









ασ1

1 Ir ασ2

1 Ir . . . ασn

1 Ir
ασ1

2 Ir ασ2

2 Ir . . . ασn

2 Ir
...

... . . .
...

ασ1

n Ir ασ2

n Ir . . . ασn
n Ir









, B =









βσ1

1 Ir βσ1

2 Ir . . . βσ1

n Ir
βσ2

1 Ir βσ2

2 Ir . . . βσ2

n Ir
...

... . . .
...

βσn

1 Ir βσn

2 Ir . . . βσn
n Ir
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Notice that by definition of the dual basis AB = BA = Irn. Define block
diagonal matrices:

X =









Xσ1 0Ir . . . 0Ir
0Ir Xσ2 . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Xσn









, Y =









Y σ1 0Ir . . . 0Ir
0Ir Y σ2 . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Y σn









,

where Y σ1 , . . . , Y σn andXσ1 , . . . , Xσn , are multivariables written now in a form
of r × r matrices indexed by σ1, . . . , σn. Let Tij and Sij , for all 1 ≤ i ≤ n, 1 ≤
j ≤ n, be r× r multivariable matrices. Define block matrices of multivariables:

T =









T11 T12 . . . T1n
T21 T22 . . . T2n
...

... . . .
...

Tn1 Tn2 . . . Tnn









, S =









S11 S12 . . . S1n

S21 S22 . . . S2n
...

... . . .
...

Sn1 Sn2 . . . Snn









Notice that:

AXB =











∑n
j=1(α1β1)

σjXσj
∑n
j=1(α1β2)

σjXσj . . .
∑n
j=1(α1βn)

σjXσj

∑n
j=1(α2β1)

σjXσj
∑n
j=1(α2β2)

σjXσj . . .
∑n
j=1(α2βn)

σjXσj

...
... . . .

...
∑n
j=1(αnβ1)

σjXσj
∑n
j=1(αnβ2)

σjXσj . . .
∑n
j=1(αnβn)

σjXσj











AYB =











∑n
j=1(α1β1)

σjY σj
∑n
j=1(α1β2)

σjY σj . . .
∑n
j=1(α1βn)

σjY σj

∑n
j=1(α2β1)

σjY σj
∑n
j=1(α2β2)

σjY σj . . .
∑n
j=1(α2βn)

σjY σj

...
... . . .

...
∑n
j=1(αnβ1)

σjY σj
∑n
j=1(αnβ2)

σjY σj . . .
∑n
j=1(αnβn)

σjY σj











.

Observe that the entries of AXB and AYB are G-equivariant. Hence, there is
a well defined homomorphism of K-algebras

(2.6) Φ : K[T, S]/(TS−Irn, ST−Irn) →
(

M [X,Y]/(XY−Irn, YX−Irn)
)G

T → AXB

S → AYB

The definition of Φ and the form of the entries of matrices AXB and AYB show
(by the same argument as in Lemma 2.4) that the map Φ is surjective. Observe
that

GLrn/K = spec K[T, S]/(TS− Irn, ST− Irn),

GLr/E = spec E[X,Y ]/(XY − Ir, Y X − Ir),

where X and Y are r × r multivariable matrices.
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Lemma 2.7. Consider the group scheme GLr/E. The map Φ induces a nat-
ural isomorphism RE/K(GLr) ∼= CE(GLrn/K) of closed group subschemes of
GLrn/K, where CE(GLrn/K) is the commutant of E in GLrn/K.

Proof. Observe that there is a natural M -algebra isomorphism

M [X,Y]/(XY− Irn, YX− Irn) ∼= Aσ1 ⊗M · · · ⊗M Aσn ,

where in this case

Aσj =M [X,Y ]/(XY−Ir, Y X−Ir)∼=M [Xσj , Y σj ]/(XσjY σj−Ir, Y
σjXσj−Ir).

Hence, by Definition 2.3 we get a natural isomorphism of schemes over K :

RE/K(GLr) ∼= spec
(

M [X,Y]/(XY− Irn, YX− Irn)
)G

and it follows that Φ induces a closed imbedding of schemes RE/K(GLr) →
GLrn over K. Moreover we easily check that KerΦ is generated by elements
α ◦T−T ◦α and α ◦S−S ◦α for all α ∈ E, where ◦ denotes the multiplication
in GLrn/K. Note that CE(GLrn/K) is equal to

spec K[T, S]
/

(TS− Irn, ST− Irn, α ◦ T− T ◦ α, α ◦ S− S ◦ α, ∀α∈E). �

Remark 2.8. Let E/K be an unramified extension of two local fields. Hence
the extension of rings of integers OE/OK has an integral basis α1, . . . , αn of
OE over OK such that the corresponding dual basis β1, . . . , βn with respect to
TrE/K is also a basis of OE over OK see [A], Chapter 7. Let ROE/OK

be the
Weil restriction functor defined analogously to the Weil restriction functor for
the extension E/K. Under these assumptions the following Lemmas 2.9 and
2.10 are proven in precisely the same way as Lemmas 2.4 and 2.6.

Lemma 2.9. Let V ′ ⊂ V be a closed imbedding of affine schemes over OE .
Under the assumptions of Remark 2.8 ROE/OK

(V ′) ⊂ ROE/OK
(V ) is a closed

imbedding of affine schemes over OK .

Lemma 2.10. Consider the group scheme GLr/OE . Under the assumptions of
Remark 2.8 there is a natural isomorphism ROE/OK

(GLr) ∼= COE
(GLrn/OK)

of closed group subschemes of GLrn/OK , where COE
(GLrn/OK) is the com-

mutant of OE in GLrn/OK .

We return to the case of the arbitrary separable field extension E/K of degree n.
Every point ofX0 ∈ GLr(E) is uniquely determined by the ring homomorphism

hX0
: E[X,Y ]/(XY − Ir, Y X − Ir) → E
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X 7→ X0, Y 7→ Y0,

where Y0 is the inverse of X0. This gives immediately the homomorphism

hT0
: K[T, S]/(TS− Irn, ST− Irn) → K

T 7→ T0 = AX0B,

S 7→ S0 = AY0B

where

X0 =









Xσ1

0 0Ir . . . 0Ir
0Ir Xσ2

0 . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Xσn

0









, Y0 =









Y σ1

0 0Ir . . . 0Ir
0Ir Y σ2

0 . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Y σn

0









,

and the action of σi on X0 and Y0 is the genuine action on the entries of X0

and Y0. Obviously hT0
determines uniquely the point T0 ∈ GLrn(K) with the

inverse S0.

Definition 2.11. Assume that Z = {Xt; t ∈ T} ⊂ GLr(E) is a set of points.
We define the corresponding set of points:

ZΦ = {Tt = AXtB; t ∈ T} ⊂ GLrn(K),

where

Xt =









Xσ1

t 0Ir . . . 0Ir
0Ir Xσ2

t . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Xσn

t









.

We denote by Zalg the Zariski closure of Z in GLr/E and by ZalgΦ the Zariski
closure of ZΦ in GLrn/K.

Proposition 2.12. We have a natural isomorphism of schemes over K :

RE/K(Zalg) ∼= ZalgΦ .

Proof. Let
Jt = (XY − Ir, Y X − Ir, X −Xt, Y − Yt)

be the prime ideal of E[X,Y ] corresponding to the point Xt ∈ GLr(E). Let

J =
⋂

t∈T

Jt.

Documenta Mathematica · Extra Volume Coates (2006) 35–75



44 G. Banaszak, W. Gajda, P. Krasoń

By definition Zalg = spec (E[X,Y ]/J). Let

Jt = (TS− Irn, ST− Irn, T− AXtB, S− AYtB)

be the prime ideal in K[T, S]/(TS− Irn, ST− Irn) corresponding to the point
AXtB ∈ GLrn(K). Define

J =
⋂

t∈T

Jt.

By definition ZalgΦ = spec (K[T, S]/J). Put A = E[X,Y ]/(XY − Ir, Y X − Ir).

Observe that the ring A
G
is generated as a K-algebra by AXB and AYB, since

A is generated by X and Y as an M -algebra. Define

J′t = (AXB− AXtB, AYB− AYtB)

which is an ideal of A
G
. Put

J′ =
⋂

t∈T

J′t.

We have the following isomorphism induced by Φ.

(2.13) K[T, S]/Jt ∼= A
G
/ J′t

∼= K.

Hence, Φ−1(J′t) = Jt and Φ−1(J′) = J. This gives the isomorphism

(2.14) K[T, S]/J ∼= A
G
/ J′.

Let B = E[X,Y ]/J. There is a natural surjective homomorphism of K-algebras
coming from the construction in the proof of Lemma 2.4 (see (2.5)):

(2.15) A
G
/ J′ → B

G

induced by the quotient map A → B. We want to prove that (2.15) is an
isomorphism. Observe that there is natural isomorphism of K-algebras:

(2.16) A
G
/ J′t

∼= A/Jt
G ∼= K.

Consider the following commutative diagram of homomorphisms ofK-algebras:

(2.17)

A
G
/ J′ −−−−→ B

G





y





y

∏

t∈T A
G
/ J′t

∼=
−−−−→

∏

t∈T A/Jt
G

The left vertical arrow is an imbedding by definition of J′ and the bottom
horizontal arrow is an isomorphism by (2.16). Hence the top horizontal arrow
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is an imbedding, i.e., the map (2.15) is an isomorphism. The composition of
maps (2.14) and (2.15) gives a natural isomorphism of K-algebras

(2.18) K[T, S]/J ∼= B
G
.

But ZalgΦ = spec (K[T, S]/J). In addition, Zalg = specB, hence

RE/K(Zalg) = specB
G

and Proposition 2.12 follows by (2.18). �

Remark 2.19. If Z is a subgroup of GLr(E), then ZΦ is a subgroup of

GLrn(K). In this case Zalg is a closed algebraic subgroup of GLr/E and ZalgΦ

is a closed algebraic subgroup of GLrn/K.

Definition 2.20. Let H = specA be an affine algebraic group scheme defined
over E and h its Lie algebra. We define g = RE/Kh to be the Lie algebra
obtained from h by considering it over K with the same bracket.

Lemma 2.21. There is the following equality of Lie algebras

Lie(RE/KH) = RE/Kh.

Proof. Let n = [E : K] and G = Gal(E/K). Since H is an algebraic group
h = Der(A) is the Lie algebra of derivations of the algebra A of functions on
H [ H1]. Let φ : Der(A) → Der(Ā) be the homomorphism of Lie algebras
(considered over E) given by the following formula:

φ(δ) = Σni=1id⊗ · · · ⊗ id⊗ δi ⊗ id⊗ · · · ⊗ id,

where δi = δ⊗1 as an element of Der(Aσi). Recall that Aσi = A⊗E,σi
M. If σ ∈

G and σ(a1⊗· · ·⊗an) = σ(ak1)⊗· · ·⊗σ(akn) one readily sees that δj(σ(akj )) =

σ(δkj (akj )) and therefore φ(δ) is G-equivariant i.e., φ(δ) ∈ Der(ĀG). It is easy

to see that φ(δ) as an element of Der(Ā) is nontrivial if δ is nontrivial. Since
φ(δ) is M -linear and ĀG⊗KM = Ā, we see that φ(δ) is a nontrivial element of
Der(ĀG) = Lie(RE/KH). On the other hand, observe that

Lie(RE/KH)⊗KK̄ = Lie(RE/KH⊗KK̄) =

= Lie(H̄ ×K · · · ×K H̄) = (⊕h)⊗E K̄ = g⊗K K̄.

This shows that Lie(RE/KH) and RE/Kh have the same dimensions and there-
fore are equal. �

Lemma 2.22. Let g be a Lie algebra over E and let g′ be its derived algebra.
Then

RE/K(g′) = (RE/K(g))′

Proof. This follows immediately from the fact that RE/K(g) and g have the
same Lie bracket (cf. Definition 2.20) �
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Lemma 2.23. If G is a connected, algebraic group over E of characteristic 0,
then

RE/K(G′) = (RE/KG)
′

Proof. We have the following identities:

Lie((RE/K(G))′) = (Lie(RE/K(G)))′ = (RE/K(Lie(G)))′ =

= RE/K((Lie(G))′) = RE/K(Lie(G′)) = Lie(RE/K(G′))

The first and the fourth equality follow from Corollary on p.75 of [H1]. The
second and fifth equality follow from Lemma 2.21. The third equality follows
from Lemma 2.22. The Lemma follows by Theorem on p. 87 of [H1] and
Proposition on p. 110 of [H1]. �

3. Some remarks on bilinear forms.

Let E be a finite extension of Q of degree e. Let El = E⊗Ql and OEl
= OE⊗Zl.

Hence El =
∏

λ|lEλ and OEl
=

∏

λ|lOλ. Let O
′
λ be the dual to Oλ with respect

to the trace TrEλ/Ql
. For l ≫ 0 we have O′

λ = Oλ see [A], Chapter 7. From now
on we take l big enough to ensure that O′

λ = Oλ for all primes λ in OE over l
and that an abelian variety A we consider, has good reduction at all primes in
OF over l. The following lemma is the integral version of the sublemma 4.7 of
[D].

Lemma 3.1. Let T1 and T2 be finitely generated, free OEl
-modules. For any

Zl-bilinear (resp. nondegenerate Zl-bilinear ) map

ψl : T1 × T2 → Zl

such that ψl(ev1, v2) = ψl(v1, ev2) for all e ∈ OEl
, v1 ∈ T1, v2 ∈ T2, there is a

unique OEl
-bilinear (resp. nondegenerate OEl

-bilinear ) map

φl : T1 × T2 → OEl

such that TrEl/Ql
(φl(v1, v2)) = ψl(v1, v2) for all v1 ∈ T1 and v2 ∈ T2.

Proof. Similary to Sublemma 4.7, [D] we observe that the map

TrEl/Ql
: HomOEl

(T1 ⊗OEl
T2 ;OEl

) → HomZl
(T1 ⊗OEl

T2 ;Zl)

is an isomorphism since it is a surjective map of torsion free Zl-modules of the
same Zl-rank. The surjectivity of TrEl/Ql

can be seen as follows. The Zl-basis
of the module T1⊗OEl

T2 is given by

B =
(

(0, . . . , 0, αλk , 0, . . . , 0)ei ⊗ e′j
)
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where (0, . . . , 0, αλk , 0, . . . , 0) ∈
∏

λ|lOλ and αλk is an element of a basis of Oλ

over Zl and ei (resp. e
′
j) is an element of the standard basis of T1 (resp. T2)

over OEl
. Let ψλk,i,j ∈ HomZl

(T1 ⊗OEl
T2 ; Zl) be the homomorphism which

takes value 1 on the element (0, . . . , 0, αλk , 0, . . . , 0)ei ⊗ e′j of the basis B and
takes value 0 on the remaining elements of the basis B. Let us take φi,j ∈
HomOEl

(T1 ⊗OEl
T2 ;OEl

) such that

φi,j(er ⊗ e′s) =

{

1 if i = r and j = s

0 if i 6= r or j 6= s

Then for each k there exist elements (the dual basis) βλk ∈ Oλ such that
TrEλ/Ql

(βλkα
λ
n) = δk,n. If we put φ

λ
i,j,k = (0, . . . , 0, βλk , 0, . . . , 0)φi,j then clearly

TrEl/Ql
(φλi,j,k(t1, t2)) = ψλi,j,k(t1, t2). Hence the proof is finished since the ele-

ments ψλi,j,k(t1, t2) form a basis of HomZl
(T1 ⊗OEl

T2 ;Zl) over Zl. �

Consider the case T1 = T2 and put Tl = T1 = T2. Assume in addition that ψl
is nondegenerate. Let

ψl : Tl/l Tl × Tl/l Tl → Z/l

be the Z/l-bilinear pairing obtained by reducing the form ψl modulo l. Define

Tλ = eλTl ∼= Tl ⊗OEl
Oλ

Vλ = Tλ ⊗Oλ
Eλ

where eλ is the standard idempotent corresponding to the decompositionOEl
=

∏

λOλ. Let πλ : OEl
→ Oλ be the natural projection. We can define an Oλ-

nondegenerate bilinear form as follows:

ψλ : Tλ × Tλ → Oλ

ψλ(eλv1, eλv2) = πλ(φl(v1, v2))

for any v1, v2 ∈ Tl. Put kλ = Oλ/λOλ. This gives the kλ-bilinear form ψλ =
ψλ ⊗Oλ

kλ

ψλ : Tλ/λTλ × Tλ/λTλ → kλ.

We also have the Eλ-bilinear form ψ0
λ := ψλ ⊗Oλ

Eλ

ψ0
λ : Vλ × Vλ → Eλ.
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Lemma 3.2. Assume that the form ψl is nondegenerate. Then the forms ψλ,
ψλ and ψ0

λ are nondegenerate for each λ|l.

Proof. First we prove that ψλ is nondegenerate for all λ|l. Assume that ψλ is
degenerate for some λ. Without loss of generality we can assume that the left
radical of ψλ is nonzero. So there is a nonzero vector eλv0 ∈ Tλ (for some
v0 ∈ Tl) which maps to a nonzero vector in Tλ/λTλ such that ψλ(eλv0, eλw) ∈
λOλ for all w ∈ Tl. Now use the decomposition Tl = ⊕λTλ, Lemma 3.1 and
the OEl

-linearity of φl to observe that for each w ∈ Tl

ψl(eλv0, w) = TrEl/Ql
(φl(eλv0,

∑

λ′

eλ′w)) = TrEλ/Ql
ψλ(eλv0, eλw) ∈ lZl.

This contradicts the assumption that ψl is nondegenerate.
Similarly, but in an easier way, we prove that ψλ is nondegenerate. From this
it immediately follows that ψ0

λ is nondegenerate. �

4. Auxiliary facts about abelian varieties.
Let A/F be a principally polarized, simple abelian variety of dimension g
with the polarization defined over F. Put R = EndF̄ (A) We assume that
EndF̄ (A) = EndF (A), hence the actions of R and GF on A(F ) commute. Put
D = EndF̄ (A) ⊗Z Q. The ring R is an order in D. Let E1 be the center of D
and let

E := {a ∈ E1; a
′ = a},

where ′ is the Rosati involution. Let RD be a maximal order in D containing
R. Put O0

E := R∩E. The ring O0
E is an order in E. Take l that does not divide

the index [RD : R]. Then RD ⊗Z Zl = R⊗Z Zl and OE ⊗Z Zl = O0
E ⊗Z Zl

The polarization of A gives a Zl-bilinear, nondegenerate, alternating pairing

(4.1) ψl : Tl(A)× Tl(A) → Zl.

Because A has the principal polarization, for any endomorphism α ∈ R we get
α′ ∈ R, (see [Mi] chapter 13 and 17) where α′ is the image of α by the Rosati
involution. Hence for any v, w ∈ Tl(A) we have ψl(αv,w) = ψl(v, α

′w) (see loc.
cit.).

Remark 4.2. Notice that if an abelian variety were not principally polarized,
one would have to assume that l does not divide the degree of the polarization
of A, to get α′ ⊗ 1 ∈ R⊗ Zl for α ∈ R.

By Lemma 3.1 there is a unique nondegenerate, OEl
-bilinear pairing

(4.3) φl : Tl(A)× Tl(A) → OEl

such that TrEl/Ql
(φl(v1, v2)) = ψl(v1, v2). As in the general case define

Tλ(A) = eλTl(A) ∼= Tl(A)⊗OEl
Oλ
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Vλ(A) = Tλ(A)⊗Oλ
Eλ.

Note that Tλ(A)/λTλ(A) ∼= A[λ] as kλ[GF ]-modules.
Again as in the general case define nondegenerate, Oλ-bilinear form

(4.4) ψλ : Tλ(A)× Tλ(A) → Oλ

ψλ(eλv1, eλv2) = πλ(φl(v1, v2))

for any v1, v2 ∈ Tl(A), where πλ : OEl
→ Oλ is the natural projection. The

form ψλ gives the forms:

(4.5) ψλ : A[λ]×A[λ] → kλ.

(4.6) ψ0
λ : Vλ(A)× Vλ(A) → Eλ.

Notice that all the bilinear forms ψλ, ψλ and ψ0
λ are alternating forms. For

l relatively prime to the degree of polarization the form ψl is nondegenerate.
Hence by lemma 3.2 the forms ψλ, ψλ and ψ0

λ are nondegenerate.

Lemma 4.7. Let χλ : GF → Zl ⊂ Oλ be the composition of the cyclotomic
character with the natural imbedding Zl ⊂ Oλ.

(i) For any σ ∈ GF and all v1, v2 ∈ Tλ(A)

ψλ(σv1, σv2) = χλ(σ)ψλ(v1, v2).

(ii) For any α ∈ R and all v1, v2 ∈ Tλ(A)

ψλ(αv1, v2) = ψλ(v1, α
′v2).

Proof. The proof is the same as the proof of Lemma 2.3 in [C2]. �

Remark 4.8. After tensoring appropriate objects with Ql in lemmas 3.1 and
4.6 we obtain Lemmas 2.2 and 2.3 of [C2].

Let A/F be an abelian variety defined over a number field F such that
EndF̄ (A) = EndF (A). We introduce some notation. Let Gl∞ , Gl, G

0
l∞ de-

note the images of the corresponding representations:

ρl : GF → GL(Tl(A)) ∼= GL2g(Zl),

ρl : GF → GL(A[l]) ∼= GL2g(Fl),

ρl ⊗Ql : GF → GL(Vl(A)) ∼= GL2g(Ql).
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Let Galgl , (Galgl resp.) denote the Zariski closure of the image of the represen-

tation ρl, (ρl ⊗ Ql, resp.) in GL2g/Zl, (GL2g/Ql, resp). We define G(l)alg to

be the special fiber of the Zl−scheme Galgl .

Due to our assumptions on the GF -action and the properties of the forms
ψλ, ψλ and ψ0

λ we get:

(4.9) Gl∞ ⊂ Galgl (Zl) ⊂
∏

λ|l

GSpTλ(A)(Oλ) ⊂ GLTl(A)(Zl)

(4.10) Gl ⊂ G(l)alg(Fl) ⊂
∏

λ|l

GSpA[λ](kλ) ⊂ GLA[l](Fl)

(4.11) G0
l∞ ⊂ Galgl (Ql) ⊂

∏

λ|l

GSpVλ(A)(Eλ) ⊂ GLVl(A)(Ql).

Before we proceed further let us state and prove some general lemmas con-
cerning l-adic representations. Let K/Ql be a local field extension and OK the
ring of integers in K. Let T be a finitely generated, free OK -module and let
V = T ⊗OK

K. Consider a continuous representation ρ : GF → GL(T ) and
the induced representation ρ0 = ρ⊗K : GF → GL(V ). Since GF is compact
and ρ0 is continuous, the subgroup ρ0(GF ) of GL(V ) is closed. By [Se7], LG.
4.5, ρ0(GF ) is an analytic subgroup of GL(V ).

Lemma 4.12. Let g be the Lie algebra of the group ρ0(GF )

(i) There is an open subgroup U0 ⊂ ρ0(GF ) such that

EndU0
(V ) = Endg (V ).

(ii) For all open subgroups U ⊂ ρ0(GF ) we have

EndU (V ) ⊂ Endg (V ).

(iii) Taking union over all open subgroups U ⊂ ρ0(GF ) we get

⋃

U

EndU (V ) = Endg (V ).
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Proof. (i) Note that for any open subgroup Ũ of g we have

(4.13) EndŨ (V ) = Endg (V )

because K Ũ = g. By [B], Prop. 3, III.7.2, for some open Ũ ⊂ g, there is an
exponential map

exp : Ũ → ρ0(GF )

which is an analytic isomorphism and such that exp (Ũ) is an open subgroup of
ρ0(GF ). The exponential map can be expressed by the classical power series for
exp (t). On the other hand by [B], Prop. 10, III.7.6, for some open U ⊂ ρ0(GF ),
there is a logarithmic map

log : U → g

which is an analytic isomorphism and the inverse of exp. The logarithmic map
can be expressed by the classical power series for ln t. Hence, we can choose Ũ0

such that U0 = exp (Ũ0) and log (U0) = Ũ0. This gives

(4.14) EndU0
(V ) = EndŨ0

(V ).

and (i) follows by (4.13) and (4.14).

(ii) Observe that for any open U ⊂ ρ0(GF ) we have

EndU (V ) ⊂ EndU0∩U (V ).

Hence (ii) follows by (i).

(iii) Follows by (i) and (ii). �

Lemma 4.15. Let A/F be an abelian variety over F such that EndF (A) =
EndF (A). Then

EndGF
(Vl(A)) = Endgl

(Vl(A)).

Proof. By the result of Faltings [Fa], Satz 4,

EndL (A)⊗Ql = EndGL
(Vl(A))

for any finite extension L/F. By the assumption EndF (A) = EndL (A). Hence

EndGF
(Vl(A)) = EndU ′ (Vl(A))

for any open subgroup U ′ of GF . So the claim follows by Lemma 4.12 (iii). �

Let A be a simple abelian variety defined over F and E be the center of the
algebra D = EndF (A) ⊗ Q. Let λ|l be a prime of OE over l. Consider the
following representations.

ρλ : GF → GL(Tλ(A)),

ρλ : GF → GL(A[λ]),

ρλ ⊗Oλ
Eλ : GF → GL(Vλ(A)),

where λ|l. Let Galgλ , (Galgλ resp.) denote the Zariski closure of the image of the
representation ρλ, (ρλ⊗Eλ resp.) in GLTλ(A)/Oλ, ( GLVλ(A)/Eλ resp.) We

define G(λ)alg to be the special fiber of the Oλ-scheme Galgλ .
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Theorem 4.16. Let A be a simple abelian variety with the property that
R = EndF̄ (A) = EndF (A). Let Rλ = R ⊗O0

E
Oλ and let Dλ = D ⊗E Eλ.

Then

(i) EndOλ[GF ] (Tλ(A)) ∼= Rλ

(ii) EndRλ[GF ] (Vλ(A)) ∼= Dλ

(iii) Endkλ[GF ] (A[λ]) ∼= Rλ ⊗Oλ
kλ for l ≫ 0.

Proof. It follows by [Fa], Satz 4 and [Za], Cor. 5.4.5. �

Lemma 4.17. Let K be a field and let R be a unital K-algebra. Put D =
EndR(M) and let L be a subfield of the center of D. Assume that L/K is a
finite separable extension. If M is a semisimple R-module then M is also a
semisimple R⊗K L-module with the obvious action of R⊗K L on M.

Proof. Take α ∈ L such that L = K(α). Let [L : K] = n. Let us write M =

⊕iMi where allMi are simple R modules. For any i we put M̃i =
∑n−1
k=0 α

kMi.

Then M̃i is an R⊗K L-module. BecauseMi is a simple R-module we can write

M̃i =

m−1
⊕

k=0

αkMi,

for some m. Observe that if m = 1, then M̃i is obviously a simple R ⊗K L-
module. If m>1, we pick any simple R-submodule Ni ⊂ M̃i, Ni 6= Mi. There
is an R- isomorphism φ : Mi → Ni by semisimplicity of M̃i. We can write
M =Mi⊕Ni⊕M

′, whereM ′ is an R-submodule ofM. Define Ψ ∈ AutR(M) ⊂
EndR(M) by Ψ|Mi

= φ, Ψ|Ni
= φ−1 and Ψ|M ′ = IdM ′ . Note that

(4.18) Ψ(

m−1
⊕

k=0

αkMi) =

m−1
⊕

k=0

αkNi

since α is in the center of D. Hence M̃i =
⊕m−1

k=0 α
kNi by the classification

of semisimple R-modules. We conclude that M̃i is a simple R ⊗K L-module.
Indeed, if N ⊂ M̃i were a nonzero R ⊗K L-submodule of M̃i then we could
pick any simple R-submodule Ni ⊂ N. If Ni = Mi then N = M̃i. If Ni 6= Mi

then by (4.18) M̃i =
⊕m−1

k=0 α
kNi ⊂ N. Since M =

∑

i M̃i, we see that M is a
semisimple R⊗K L-module. �

Theorem 4.19. Let A be a simple abelian variety with the property that
R = EndF̄ (A) = EndF (A). Let Rλ = R⊗O0

E
Oλ and let Dλ = D⊗EEλ. Then

GF acts on Vλ(A) and A[λ] semisimply and Galgλ and G(λ)alg are reductive

algebraic groups. The scheme Galgλ is a reductive group scheme over Oλ for l
big enough.

Proof. It follows by [Fa], Theorem 3 and our Lemma 4.17. The last statement
follows by [LP1], Proposition 1.3, see also [Wi], Theoreme 1. �

Documenta Mathematica · Extra Volume Coates (2006) 35–75



The Image of l-Adic Galois Representations 53

5. Abelian varieties of type I and II.
In this section we work with abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201, i.e. E ⊂ D =
EndF̄ (A) ⊗Z Q is the center of D and E is a totally real extension of Q of
degree e. To be more precise D is either E (type I) or an indefinite quaternion
algebra with the center E, such that D⊗QR ∼=

∏e
i=1M2,2(R) (type II). In the

first part of this section we prove integral versions of the results of Chi [C2]
for abelian varieties of type II. Let l be a sufficiently large prime number that
does not divide the index [RD : R] and such that D ⊗E Eλ splits over Eλ for
any prime λ in OE over l. Hence, Dλ =M2,2(Eλ). Then by [R, Corollary 11.2
p. 132 and Theorem 11.5 p. 133] the ring Rλ is a maximal order in Dλ. So by
[R] Theorem 8.7 p. 110 we get Rλ = M2,2(Oλ), hence Rλ⊗Oλ

kλ = M2,2(kλ).
Similarly to [C2] we put

t =

(

1 0
0 −1

)

, u =

(

0 1
1 0

)

.

Let e = 1
2 (1+ t), f = 1

2 (1+u), X = e Tλ(A), Y = (1−e)Tλ(A), X
′ = f Tλ(A),

Y ′ = (1 − f)Tλ(A). Put X = X⊗Oλ
Eλ, X

′ = X ′⊗Oλ
Eλ, Y = Y⊗Oλ

Eλ,

Y ′ = Y ′⊗Oλ
Eλ, X = X⊗Oλ

kλ, X
′
= X ′⊗Oλ

kλ, Y = Y⊗Oλ
kλ, Y

′
= Y ′⊗Oλ

kλ.
Because ueu = 1 − e, the matrix u gives an Oλ[GF ]-isomorphism between
X and Y, hence it yields an Eλ[GF ]-isomorphism between X and Y and a
kλ[GF ]-isomorphism between X and Y. Multiplication by t gives an Oλ[GF ]-
isomorphism between X ′ and Y ′, hence it yields an Eλ[GF ]-isomorphism be-

tween X ′ and Y ′ and a kλ[GF ]-isomorphism between X
′
and Y

′
. Observe that

(5.1) EndOλ[GF ] (X ) ∼= EndOλ[GF ](X
′) ∼= Oλ

(5.2) EndEλ[GF ] (X) ∼= EndEλ[GF ](X
′) ∼= Eλ

(5.3) Endkλ[GF ] (X ) ∼= Endkλ[GF ](X
′
) ∼= kλ.

So the representations of GF on the spaces X,Y,X ′, Y ′ (resp. X ,Y ,X
′
,Y

′
) are

absolutely irreducible over Eλ (resp. over kλ). Hence, the bilinear form ψ0
λ

cf. (4.4) (resp. ψλ cf. (4.5)) when restricted to any of the spaces X,X ′, Y, Y ′,

(resp. spaces X ,X
′
,Y ,Y

′
) is either nondegenerate or isotropic.

We obtain the integral version of Theorem A of [C2].

Theorem 5.4. If A is of type II, then there is a free Oλ-module Wλ(A) of
rank 2h such that

(i) we have an isomorphism of Oλ[GF ]- modules Tλ(A) ∼= Wλ(A)⊕Wλ(A)
(ii) there is an alternating pairing ψλ : Wλ(A)×Wλ(A) → Oλ

(ii’) the induced alternating pairing ψ0
λ : Wλ(A) ×Wλ(A) → Eλ is nonde-

generate, where Wλ(A) = Wλ(A)⊗Oλ
Eλ

(ii”) the induced alternating pairing ψλ : Wλ(A)×Wλ(A) → kλ is nonde-
generate, where Wλ(A) = Wλ(A)⊗Oλ

kλ.
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The pairings in (ii), (ii’) and (ii”) are compatible with the GF -action in the
same way as the pairing in Lemma 4.7 (i).

Proof. (ii’) is proven in [C2], while (i) and (ii) are straightforward generaliza-
tions of the arguments in loc. cit. The bilinear pairing φl is nondegenerate,
hence the bilinear pairing φl is nondegenerate, since the abelian variety A is
principally polarized by assumption. (Actually φl is nondegenerate for any
abelian variety with polarization degree prime to l). So, by Lemma 3.2 the
form ψλ is nondegenerate for all λ hence simultaneously the forms ψ0

λ and ψλ
are nondegenerate. Now we finish the proof of (ii”) arguing for A[λ] similarly
as it is done for Vλ in [C2], Lemma 3.3. �

From now on we work with the abelian varieties of type either I or II. We

assume that the field F of definition of A is such that Galgl is a connected
algebraic group.
Let us put

(5.5) Tλ =











Tλ(A) if A is of type I

Wλ(A) , if A is of type II

Let Vλ = Tλ ⊗Oλ
Eλ and Aλ = Vλ/Tλ. With this notation we have:

(5.6) Vl(A) =











⊕

λ|l Vλ if A is of type I

⊕

λ|l

(

Vλ ⊕ Vλ
)

, if A is of type II

We put

(5.7) Vl =
⊕

λ|l

Vλ

Let VΦλ
be the space Vλ considered over Ql. We define ρΦλ

(g) = Tλ =
AλXλBλ, where Xλ ∈ GL(Vλ) is such that ρλ(g) = Xλ. ( cf. the definition
of the map Φ in (2.6) for the choice of Aλ and Bλ). Proposition 2.12 motivates
the definition of ρΦλ

. We have the following equality of Ql-vector spaces:

(5.8) Vl =
⊕

λ|l

VΦλ

The l-adic representation

(5.9) ρl : GF −→ GL(Vl(A))
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induces the following representations (note that we use the notation ρl for both
representations (5.9) and (5.10) cf. Remark 5.13 ):

(5.10) ρl : GF −→ GL(Vl)

(5.11)
∏

ρλ : GF −→
∏

λ

GL(Vλ)

(5.12)
∏

ρΦλ
: GF −→

∏

Φλ

GL(VΦλ
).

Remark 5.13. In the case of abelian variety of type II we have Vl(A) = Vl⊕Vl
and the action of GF on the direct sum is the diagonal one as follows from
Theorem 5.4. Hence, the images of the Galois group via the representations
(5.9), (5.10) and (5.12) are isomorphic. Also the Zariski closures of the images
of these three representations are isomorphic as algebraic varieties over Ql in
the corresponding GL-groups. Similarly, Vλ(A) = Vλ ⊕ Vλ with the diagonal
action of GF on the direct sum by Theorem 5.4. Hence, the images of the
representations given by GF -actions on Vλ and Vλ(A) are isomorphic and so
are their Zariski closures in corresponding GL-groups. For this reason, in the
sequel, we will identify the representation of GF on Vl(A) (respectively on
Vλ(A)) with its representation on Vl (resp. Vλ).

By Remark 5.13 we can consider Galgl (resp. Galgλ ) to be the Zariski closure
in GLVl

(resp. GLVλ
) of the image of the representation ρl of (5.10) (resp. ρλ

of (5.11)). Let GalgΦλ
denote the Zariski closure in GLVΦλ

of the image of the

representation ρΦλ
of (5.12). Let gl be the Lie algebra of Galgl , gλ be the Lie

algebra of Galgλ and let gΦλ
be the Lie algebra of GalgΦλ

. By definition, we have
the following inclusions:

(5.14) Galgl ⊂
∏

λ|l
GalgΦλ

(5.15) (Galgl )′ ⊂
∏

λ|l
(GalgΦλ

)′

(5.16) gl ⊂
⊕

λ|l
gΦλ

(5.17) gssl ⊂
⊕

λ|l
gssΦλ

.

The map (5.14) gives a map

(5.18) Galgl → GalgΦλ
,

which induces the natural map of Lie algebras:

(5.19) gl → gΦλ
.
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Lemma 5.20. The map (5.19) of Lie algebras is surjective for any prime λ|l.
Hence the following map of Lie algebras:

(5.21) gssl → gssΦλ

is surjective.

Proof. We know by the result of Tate, [T2] that the Ql[GF ]-module Vl(A) is
of Hodge-Tate type for any prime v of OF dividing l. Hence by the theorem of
Bogomolov cf. [Bo] we have

gl = Lie (ρl(GF )).

Since each Ql[GF ]-module VΦλ
is a direct summand of the Ql[GF ]-module Vl,

then the Ql[GF ]-module VΦλ
is also of Hodge-Tate type for any prime v of OF

dividing l. It follows by the theorem of Bogomolov, [Bo] that

gΦλ
= Lie (ρΦλ

(GF )).

But the surjective map of l-adic Lie groups ρl(GF ) → ρΦλ
(GF ) induces the

surjective map of l-adic Lie algebras Lie (ρl(GF )) → Lie (ρΦλ
(GF )). �

Lemma 5.22. Let A/F be an abelian variety over F of type I or II such that
EndF (A) = EndF (A). Then

(5.23) Endgλ
(Vλ) ∼= EndEλ[GF ] (Vλ) ∼= Eλ

(5.24) EndgΦλ
(VΦλ

) ∼= EndQl[GF ] (VΦλ
) ∼= Eλ.

Proof. By [F], Theorem 4, the assumption EndF (A) = EndL (A) for any finite
extension L/F, Theorem 4.16 (ii), the equality (5.2) and Theorem 5.4 we get

(5.25) Eλ ∼= EndEλ[GF ] (Vλ) ∼= EndEλ[GL] (Vλ).

This implies the equality

EndGF
(Vλ) = EndU (Vλ)

for any open subgroup U of GF . Hence, the equality (5.23) follows by
Lemma 4.12 (iii). For any F ⊂ L ⊂ F we have M2,2(EndQl[GL](Vl)) =

EndQl[GL](V
2
l ) = EndQl[GL](Vl(A)) and

(5.26) EndQl[GL](Vl(A)) ∼=
∏

λ|l

Dλ
∼=

∏

λ|l

M2,2(Eλ).
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On the other hand

(5.27)
∏

λ|l

Eλ ∼=
∏

λ|l

EndEλ[GL](Vλ) ⊂ EndQl[GL](Vl).

Hence, comparing the dimensions over Ql in (5.26) and (5.27) we get

(5.28)
∏

λ|l

EndEλ[GL](Vλ) ∼= EndQl[GL](Vl).

By (5.28) we clearly have

(5.29)
∏

λ|l

EndQl[GL](VΦλ
) ⊂ EndQl[GL](Vl) ∼=

∏

λ|l

Eλ,

and

(5.30) EndEλ[GL](Vλ) ⊂ EndQl[GL](VΦλ
).

It follows by (5.25), (5.29) and by (5.30) that for any finite field extension
F ⊂ L contained in F we have

(5.31) EndQl[GL](VΦλ
) ∼= EndEλ[GL](Vλ) ∼= Eλ.

The isomorphisms (5.31) imply that

(5.32) EndGF
(VΦλ

) ∼= EndU (VΦλ
)

for any open subgroup U of GF . The isomorphism (5.24) follows by (5.32) and
Lemma 4.12 (iii). �

Lemma 5.33. gssλ = sp2h(Eλ).

Proof. In the proof we adapt to the current situation the argument from [BGK],
Lemma 3.2. The only thing to check is the minuscule conjecture for the λ-adic
representations ρF : GF → GL(Vλ). By the work of Pink cf. [P], Corollary
5.11, we know that gssl ⊗ Q̄l may only have simple factors of types A,B,C or
D. By the semisimplicity of gssl and Lemma 5.20 the simple factors of gssΦλ

⊗ Q̄l
are of the same types. By Proposition 2.12 and Lemmas 2.21, 2.22, 2.23 we get

(5.34) gssΦλ

∼= REλ/Ql
gssλ .

Since
gssΦλ

⊗Ql
Ql

∼= gssλ ⊗Eλ
Eλ⊗Ql

Q ∼=
⊕

Eλ →֒Ql

gssλ ⊗Eλ
Q

we see that the simple factors of gssλ ⊗Eλ
Q are of types A,B,C or D. The rest

of the argument is the same as in the proof of Lemma 3.2 of [BGK]. �
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Lemma 5.35. There are natural isomorphisms of Ql-algebras.

(5.36) Endgss
Φλ

(VΦλ
) ∼= Endgss

λ
(Vλ) ∼= Eλ

Proof. Since gλ is reductive and it acts irreducibly on the module Vλ (cf.
Lemma 5.33) by [H2], Prop. p. 102 we have:

(5.37) gλ = Z(gλ)⊕ gssλ

and Z(gλ) = 0 or Z(gλ) = Eλ. This gives

(5.38) Endgss
λ
(Vλ) = Endgλ

(Vλ).

The Weil restriction functor commutes with the operation of taking the center
of a Lie algebra, hence we get Z(gΦλ

) = 0 or Eλ and by (5.34):

gΦλ
= Z(gΦλ

)⊕ gssΦλ
.

Since gΦλ
∼= REλ/Ql

gλ, it is clear that

Endgss
Φλ

(VΦλ
) = EndgΦλ

(VΦλ
).

The lemma follows now from Lemma 5.22. �

Proposition 5.39. There is an equality of Lie algebras:

(5.40) gssl =
⊕

λ|l

gssΦλ

Proof. Put V l = Vl ⊗Ql
Ql, V λ = Vλ ⊗Eλ

Ql, gssl = gssl ⊗Ql
Ql, gssΦλ

=

gssΦλ
⊗Ql

Ql. By (5.34) we get

(5.41) gssΦλ

∼= gssλ ⊗Eλ
Eλ ⊗Ql

Ql
∼=

∏

Eλ →֒Ql

gssλ ⊗Eλ
Ql

∼=
∏

Eλ →֒Ql

sp (V λ)

By Corollary 1.2.2 of [C1] we have gl = Ql ⊕ gssl , hence

Endgss
l
(Vl(A)) = Endgl

(Vl(A)).

By Lemmas 5.20 and 5.35

(5.42)
∏

λ|l

Eλ ∼=
∏

λ|l

Endgss
Φλ

(VΦλ
) ∼=

∏

λ|l

Endgss
l
(VΦλ

) ⊂ Endgss
l
(Vl).
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But by assumption on l and (5.42)

∏

λ|l

Dλ
∼=

∏

λ|l

M2,2(Eλ) ∼= M2,2(
∏

λ|l

Eλ) ⊂M2,2(Endgss
l
(Vl)) =

(5.43) = Endgss
l
(Vl(A)) = Endgl

(Vl(A)) ∼=
∏

λ|l

Dλ.

Comparing dimensions in (5.43) we get

(5.44) Endgss
l
(Vl) ∼=

∏

λ|l

Eλ.

Hence we get

(5.45) Endgss
l
(V l) ∼= Endgss

l
(Vl)⊗Ql

Ql
∼=

∏

λ|l

Eλ⊗Ql
Ql

∼=
∏

λ|l

∏

Eλ →֒Ql

Ql.

(5.46) EndQl[GF ] (V λ)
∼= EndEλ[GF ] (Vλ)⊗Eλ

Ql
∼= Eλ ⊗Eλ

Ql
∼= Ql.

(5.47) V l ∼=
⊕

λ|l

Vλ ⊗Ql
Ql

∼=
⊕

λ|l

⊕

Eλ →֒Ql

V λ.

By (5.21) the map of Lie algebras gssl → gssΦλ
is surjective. Isomorphisms (5.45),

(5.46) and (5.47) show that the simple gssl modules gssλ ⊗Eλ
Ql, for all λ|l and

all Eλ →֒ Ql, are pairwise nonisomorphic submodules of gssl . Hence by [H2],
Theorem on page 23

(5.48)
⊕

λ|l

⊕

Eλ →֒Ql

gssλ ⊗Eλ
Ql ⊂ gssl .

Tensoring (5.17) with Ql and comparing with (5.48) we get

(5.49)
⊕

λ|l

⊕

Eλ →֒Ql

gssλ ⊗Eλ
Ql

∼= gl
ss.

Hence for dimensional reasons (5.17), (5.41) and (5.49) imply (5.40). �

Corollary 5.50. The representations ρΦλ
, for λ|l are pairwise nonisomor-

phic. The representations of the Lie algebra gssl on VΦλ
are pairwise noniso-

morphic over Ql.

Proof. It follows by Lemmas 5.20 and 5.22 and equalities (5.8), (5.36),
(5.44). �
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Corollary 5.51. There is an equality of ranks of group schemes over Ql:

(5.52) rank (Galgl )′ = rank
∏

λ|l

REλ/Ql
(Sp2h/Eλ).

Proof. The Corollary follows by Lemma 5.33, equality (5.40), the isomorphism
(5.34) and Lemma 2.21. �

Taking into account (4.10), (4.11) and Remark 5.13 we get:

(5.53) G(l)alg ⊂
∏

λ|l

Rkλ/Fl
(GSpAλ[λ])

∼=
∏

λ|l

Rkλ/Fl
(GSp2h)

(5.54) Galgl ⊂
∏

λ|l

REλ/Ql
(GSpVλ

) ∼=
∏

λ|l

REλ/Ql
(GSp2h).

6. Computation of the images of the Galois representations ρl and
ρl.

In this section we explicitly compute the images of the l-adic representations
induced by the action of the absolute Galois group on the Tate module of a
large class of abelian varieties of types I and II described in the definition below.

Definition of class A. We say that an abelian variety A/F, defined over a
number field F, is of class A, if the following conditions hold:

(i) A is a simple, principally polarized abelian variety of dimension g
(ii) R = EndF̄ (A) = EndF (A) and the endomorphism algebraD = R⊗ZQ,

is of type I or II in the Albert list of the division algebras with involution
cf. [Mu], p. 201

(iii) the field F is such that for every l the Zariski closure Galgl of ρl(GF ) in
GL2g/Ql is a connected algebraic group

(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d2 = [D : E].

Let L be a local field with the ring of integers OL with maximal ideal mL = m

and the residue field k = OL/m.

Lemma 6.1. Let

(6.2) G1
� � // G2
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be a closed immersion of two smooth, reductive group schemes over OL. Let

(6.3) G1
� � // G2

be the base change to L of the arrow (6.2) and let

(6.4) G1(m) � � // G2(m)

be the base change to k of the arrow (6.2). If rank G1 = rank G2 then
rank G1(m) = rank G2(m).

Proof. By [SGA3, Th. 2.5 p. 12] applied to the special point of the scheme
specOL there exists an étale neighborhood S′ → specOL of the geometric point
over the special point such that the group schemes G1,S′ = G1 ×specOL

S′ and
G2,S′ = G2 ×specOL

S′ have maximal tori T1,S′ and T1,S′ respectively. By
[SGA3] XXII, Th. 6.2.8 p. 260 we observe (we do not need it here but in the
Theorem 6.6 below) that (Gi,S′)′ ∩ Ti,S′ is a maximal torus of (Gi,S′)′. By the
definition of a maximal torus and by [SGA3] XIX, Th. 2.5, p. 12 applied to the
special point of specOL, we obtain that the special and generic fibers of each
scheme Gi,S′ have the same rank. But clearly the generic (resp. special) fibers
of schemes Gi,S′ and Gi have the same rank for i = 1, 2. Hence going around
the diagram

(6.5)

G1
_�

��

� � // G2
_�

��

G1
� � // G2

G1(m) � � //
?�

OO

G2(m)
?�

OO

and taking into account the assumptions that the ranks of the upper corners
are the same we get rank G1(m) = rank G2(m). �

Theorem 6.6. Let A/F be an abelian variety of class A. Then for all l ≫ 0,
we have equalitiy of ranks of group schemes over Fl:

(6.7) rank (G(l)alg)′ = rank
∏

λ|l

Rkλ/Fl
(Sp2h)

Proof. By [LP1] Prop.1.3 and by [Wi], Th.1 and 2.1, for l ≫ 0 the group

scheme Galgl over specZl is smooth and reductive. For such an l the struc-

ture morphism (Galgl )′ → specZl is the base change of the smooth morphism
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Galgl → DZl
(DZl

(Galgl )) via the unit section of DZl
(DZl

(Galgl )), see [SGA3]
XXII, Th. 6.2.1, p. 256 where DS(G) = HomS−gr(G, Gm,S) for a scheme S.

Hence, the group scheme (Galgl )′ is also smooth over Zl. By [SGA3] loc. cit,

the group scheme (Galgl )′ is semisimple. We finish the proof by taking L = Ql,

G1 = (Galgl )′, G2 =
∏

λ|l ROλ/Zl
(Sp2h) in Lemma 6.1 and applying Corollary

5.51. �

Remark 6.8. If G is a group scheme over S0 then the derived subgroup G′ is
defined as the kernel of the natural map

G → DS0
(DS0

(G))

[V], [SGA3]. Since this map is consistent with the base change, we see that for
any scheme S over S0 we get

G′ ×S0
S = (G×S0

S)′.

Theorem 6.9. Let A/F be an abelian variety of class A. Then for all l ≫ 0,
we have equalities of group schemes:

(6.10) (Galgl )′ =
∏

λ|l

REλ/Ql
(Sp2h)

(6.11) (G(l)alg)′ =
∏

λ|l

Rkλ/Fl
(Sp2h)

Proof. The proof is similar to the proof of Lemma 3.4 of [BGK]. We prove the
equality (6.11). The proof of the equality (6.10) is analogous. Let

ρ
l
: G(l)alg → GL2g

denote the representation induced by the inclusion G(l)alg ⊂ GL2g. By the re-
sult of Faltings cf. [Fa], the representation ρ

l
is semisimple and the commutant

of ρ
l
(G(l)alg) in the matrix ring M2g,2g is EndF̄ (A)⊗Z Fl. The representation

ρ
l
factors through the imbedding (5.53). Projecting onto the λ component in

(5.53) we obtain the representation

(6.12) ρ
Φλ

: G(l)alg → Rkλ/Fl
(GSpA[λ]) ∼= Rkλ/Fl

(GSp2h).

This map corresponds to the map

(6.13) G(l)alg ⊗Fl
kλ → GSp2h.
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By Remark 6.8 restriction of the the map (6.13) to the derived subgroups gives
the following map:

(6.14) (G(l)alg)′ ⊗Fl
kλ → Sp2h

which in turn gives the representation

ρ
Φλ

: (G(l)alg)′ → Rkλ/Fl
(Sp2h).

Now by (5.3) we have the natural isomorphisms:

∏

kλ →֒Fl

Fl ∼= kλ ⊗Fl
Fl ∼= Endkλ⊗Fl

Fl[GF ](Aλ[λ]⊗Fl
Fl) ∼=

∼= Endkλ⊗Fl
Fl[GF ](Aλ[λ]⊗kλ kλ ⊗Fl

Fl) ∼=

(6.15) ∼=
∏

kλ →֒Fl

EndFl[GF ](Aλ[λ]⊗kλ Fl).

Note that Z(Sp2h) ∼= µ2 and this isomorphism holds over any field of definition.
The isomorphisms (6.15) imply by the Schur’s Lemma:

ρ
Φλ

(Z((G(l)alg)′)) ⊂ Rkλ/Fl
(µ2).

Hence
Z((G(l)alg)′) ⊂

∏

λ|l

Rkλ/Fl
(µ2) = Z(

∏

λ|l

Rkλ/Fl
(Sp2h)).

Observe that both groups (G(l)alg)′ and
∏

λ|lRkλ/Fl
(Sp2h) are reductive. Now

the proof is finished in the same way as the proof of Lemma 3.4 in [BGK]. �

Theorem 6.16. Let A/F be an abelian variety of class A. Then for l ≫ 0, we
have:

(6.17) ρl(G
′
F ) =

∏

λ|l

Sp2h(kλ) = Sp2h(OE/lOE),

(6.18) ρl(G′
F ) =

∏

λ|l

Sp2h(Oλ) = Sp2h(OE ⊗Z Zl),

where ρl is the representation ρl mod l and G′
F is the closure of the commutator

subgroup G′
F ⊂ GF computed with respect to the natural profinite topology

of GF .

Proof. To prove the equality (6.17), note that the group scheme
∏

λ|lRkλ/Fl
(Sp2h) is simply connected, since its base change to Fl is
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∏

λ|l

∏

kλ →֒Fl
Sp2h/Fl, which is clearly simply connected. From now on

the argument is the same as in the proof of Theorem 3.5 in [BGK].
Namely: it follows by (6.11) that (G(l)alg)′ is simply connected. So
(G(l)alg)′(Fl) = (G(l)alg)′(Fl)u. Hence, by a theorem of Serre (cf. [Wi],
Th.4) we get

(G(l)alg)′(Fl) ⊂ (ρl(GF ))
′ = ρl(G

′
F ).

On the other hand, by definition of the group G(l)alg, it is clear that

ρl(G
′
F ) = (ρl(GF ))

′ ⊂ (G(l)alg)′(Fl).

As for the second equality in (6.18) we have

(6.19) ρl
(

G′
F

)

= (ρl(GF ))′ ⊂
∏

λ|l

Sp2h(Oλ),

where (ρl(GF ))′ denotes the closure of (ρl(GF ))
′ in the natural (λ-adic in each

factor) topology of the group
∏

λ|l Sp2h(Oλ). Using equality (6.17) and Lemma

6.20 stated below, applied to X = (ρl(GF ))′, we finish the proof. �

Lemma 6.20. LetX be a closed subgroup in
∏

λ|l Sp2h(Oλ) such that its image

via the reduction map

∏

λ|l

Sp2h(Oλ) →
∏

λ|l

Sp2h(kλ)

is all of
∏

λ|l Sp2h(kλ). Then X =
∏

λ|l Sp2h(Oλ).

Proof. The proof is similar to the proof of Lemma 3 in [Se] chapter IV, 3.4. �

7. Applications to classical conjectures.

Choose an imbedding of F into the field of complex numbers C. Let V =
H1(A(C),Q) be the singular cohomology group with rational coefficients. Con-
sider the Hodge decomposition

V ⊗Q C = H1,0 ⊕H0,1,

where Hp,q = Hp(A; ΩqA/C) and H
p,q = Hq,p. Observe that Hp,q are invariant

subspaces with respect to D = EndF (A) ⊗ Q action on V ⊗Q C. Hence, in
particular Hp,q are E-vector spaces. Let

ψ : V × V → Q
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be the Q-bilinear, nondegenerate, alternating form coming from the Riemann
form of A. Since A has a principal polarization by assumption, the form ψ is
given by the standard matrix

J =

(

0 Ig
−Ig 0

)

.

Define the cocharacter

µ∞ : Gm(C) → GL(V ⊗Q C) = GL2g(C)

such that, for any z ∈ C×, the automorphism µ∞(z) is the multiplication by z
on H1,0 and the identity on H0,1.

Definition 7.1. The Mumford-Tate group of the abelian variety A/F is
the smallest algebraic subgroup MT (A) ⊂ GL2g, defined over Q, such that
MT (A)(C) contains the image of µ∞. The Hodge group H(A) is by definition
the connected component of the identity in MT (A) ∩ SLV ∼=MT (A) ∩ SL2g.

We refer the reader to [D] for an excellent exposition on the Mumford-Tate
group. In particular, MT (A) is a reductive group loc. cit. Since, by definition

µ∞(C×) ⊂ GSp(V, ψ)(C) ∼= GSp2g(C),

it follows that the group MT (A) is a reductive subgroup of the group of sym-
plectic similitudes GSp(V, ψ) ∼= GSp2g and that

(7.2) H(A) ⊂ Sp(V, ψ) ∼= Sp2g.

Remark 7.3. Let V be a finite dimensional vector space over a field K such
that it is also an R-module for a K-algebra R. Let G be a K-group subscheme
of GLV . Then by the symbol CR(G) we will denote the commutant of R in
G. The symbol C◦

R(G) will denote the connected component of identity in
CR(G). Let β : V × V → K be a bilinear form and let G(V,β) ⊂ GLV be
the subscheme of GLV of all isometries with respect to the bilinear form β. It
is easy to check that CR(G(V,β)) ⊗K L ∼= CR⊗KL(G(V⊗KL, β⊗KL)). Note that
MT (A) ⊂ CD(GSp(V, ψ)) by definitions.

Definition 7.4. The algebraic group L(A) = C◦
D(Sp(V, ψ)) is called the Lef-

schetz group of a principally polarized abelian variety A. Note that the group
L(A) does not depend on the form ψ cf. [R2].

By [D], Sublemma 4.7, there is a unique E-bilinear, nondegenerate, alternating
pairing

φ : V × V → E

such that TrE/Q(φ) = ψ. Taking into account that the actions of H(A) and
L(A) on V commute with the E-structure, we get

(7.5) H(A) ⊂ L(A) ⊂ RE/QSp(V, φ) ⊂ Sp(V, ψ).

But RE/Q(Sp(V, φ)) = CE(Sp(V, ψ)) hence CD(RE/Q(Sp(V, φ))) = CD(Sp(V, ψ))
so

(7.6) H(A) ⊂ L(A) = C◦
D(RE/Q(Sp(V, φ))) ⊂ CD(RE/Q(Sp(V, φ))).
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Definition 7.7. If L/Q is a field extension of Q we put

MT (A)L :=MT (A)⊗Q L, H(A)L := H(A)⊗Q L, L(A)L := L(A)⊗Q L.

Conjecture 7.8 (Mumford-Tate cf. [Se5], C.3.1). If A/F is an abelian
variety over a number field F , then for any prime number l

(7.9) (Galgl )◦ =MT (A)Ql
,

where (Galgl )◦ denotes the connected component of the identity.

Theorem 7.10 (Deligne [D], I, Prop. 6.2). If A/F is an abelian variety
over a number field F and l is a prime number, then

(7.11) (Galgl )◦ ⊂MT (A)Ql
.

Theorem 7.12. The Mumford-Tate conjecture holds true for abelian varieties
of class A defined in the beginning of Section 6.

Proof. By [LP1], Theorem 4.3, it is enough to verify (7.9) for a single prime
l only. We use the equality (6.10) for a big enough prime l. The proof goes
similarly to the proof of Theorem 3.6 in [BGK]. In the proof we will make some
additional computations, which provide an extra information on the Hodge
group H(A). The Hodge group H(A) is semisimple (cf. [G], Prop. B.63) and
the center of MT (A) is Gm (cf. [G], Cor. B.59). Since MT (A) = GmH(A),
we get

(7.13) (MT (A)Ql
)′ = (H(A)Ql

)′ = H(A)Ql
.

By (7.11), (7.13) and (6.10)

(7.14)
∏

λ|l

REλ/Ql
(Sp(Vλ,ψ0

λ
)) ∼=

∏

λ|l

REλ/Ql
(Sp2h) ⊂ H(A)Ql

.

On the other hand by (7.6)

(7.15) H(A)Ql
⊂ L(A)Ql

⊂ CD(RE/Q(Sp(V, φ)))⊗Q Ql.

Since RE/Q(Sp(V, φ)) = CE(Sp(V, ψ)), by Remark 7.3, formulae (7.14) and (7.15)
we get:

(7.16)
∏

λ|l

REλ/Ql
(Sp(Vλ,ψ0

λ
)) ⊂

∏

λ|l

CDλ
(REλ/Ql

(Sp(Vλ(A), ψ0

λ
))).

For A of type I, Dλ = Eλ and Vλ(A) = Vλ hence, trivially, the inclusion
(7.16) is an equality. Assume that A is of type II. Since Vλ(A) = Vλ ⊕ Vλ and
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Dλ =M2,2(Eλ), evaluating both sides of the inclusion (7.16) on the Ql-points,
we get equality with both sides equal to

∏

λ|l

∏

Eλ →֒Ql

(Sp(Vλ,φλ|Vλ
))(Ql)

which is an irreducible algebraic variety over Ql. Then we use Prop. II, 2.6 and
Prop. II, 4.10 of [H] in order to conclude that the groups H(A)Ql

, L(A)Ql
and

CD(RE/Q(Sp(V, φ))) ⊗Q Ql are connected. Hence all the groups H(A), L(A)
and CD(RE/Q(Sp(V, φ))) are connected, and we have

(7.17)
∏

λ|l

REλ/Ql
(Sp(Vλ,φλ|Vλ

)) ∼=
∏

λ|l

REλ/Ql
(Sp2h) =

= H(A)Ql
= L(A)Ql

= CD(RE/Q(Sp(V, φ)))⊗Q Ql.

By (6.10), (7.17) and [Bo], Corollary 1. p. 702 we get

(7.18) MT (A)Ql
= GmH(A)Ql

= Gm(Galgl )′ ⊂ Galgl .

The Theorem follows by (7.11) and (7.18). �

Corollary 7.19. If A is an abelian variety of class A, then

(7.20) H(A)Q = L(A)Q = CD(RE/Q(Sp(V, φ))) = CD(Sp(V, ψ)).

Proof. Taking Lie algebras of groups in (7.17) we deduce by a simple dimension
argument that

(7.21) LieH(A) = Lie L(A) = Lie CD(RE/Q(Sp(V, φ))).

In the proof of Theorem 7.12 we have showed that the groups H(A), L(A)
and CD(RE/Q(Sp(V, φ))) are connected. Hence, by Theorem p. 87 of [H1] we
conclude that

(7.22) H(A) = L(A) = CD(RE/Q(Sp(V, φ))). �

Corollary 7.23. If A is an abelian variety of class A, then for all l:

(7.24) H(A)Ql
=

∏

λ|l

CDλ
(REλ/Ql

(Sp(Vλ(A), φ⊗QEλ))).

In particular, for l ≫ 0 we get

(7.25) H(A)Ql
=

∏

λ|l

REλ/Ql
(Sp(Vλ, φ⊗QEλ)).

Proof. Equality (7.24) follows immediately from Corollary 7.19. Equality (7.25)
follows then from (7.17). �

We have:
H1(A(C); R) ∼= V ⊗Q R ∼=

⊕

σ:E →֒R

V ⊗E,σ R.

Put Vσ(A) = V ⊗E,σ R and let φσ be the form

φ⊗E,σ R : Vσ(A)⊗R Vσ(A) → R.
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Lemma 7.26. If A is simple, principally polarized abelian variety of type II,
then for each σ : E →֒ R there is an R-vector space Wσ(A) of dimension
g
e = 4 dimA

[D:Q] such that:

(i) Vσ(A) ∼=Wσ(A)⊕Wσ(A),
(ii) the restriction of φ⊗Q R to Wσ(A) gives a nondegenerate, alternating

pairing
ψσ : Wσ(A)×Wσ(A) → R.

Proof. Using the assumption that D ⊗Q R ∼= M2,2(R) the proof is similar to
the proof of Theorem 5.4. �

We put

W∞,σ =











Vσ(A) if A is of type I

Wσ(A) , if A is of type II

and

ψσ =











φσ if A is of type I

φσ|Wσ(A) , if A is of type II.

Observe that

dimRW∞,σ =











2g
e = 2 dimA

[D:Q] if A is of type I

g
e = 4 dimA

[D:Q] , if A is of type II.

Corollary 7.27. If A is an abelian variety of class A, then

(7.28) H(A)R = L(A)R =
∏

σ:E →֒R

Sp(W∞,σ, ψσ)

(7.29) H(A)C = L(A)C =
∏

σE →֒R

Sp(W∞,σ⊗CC, ψσ⊗RC).

Proof. It follows from Lemma 7.26 and Corollary 7.19. �

We recall the conjectures of Tate and Hodge in the case of abelian varieties.
See [G], [K] and [T1] for more details.

Conjecture 7.30 (Hodge). If A/F is a simple abelian variety over a number
field F, then for every 0 ≤ p ≤ g the natural cycle map induces an isomorphism

(7.31) Ap(A) ∼= H2p(A(C); Q) ∩Hp,p,

where Ap(A) is the Q-vector space of codimension p algebraic cycles on A
modulo the homological equivalence.
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Conjecture 7.32 (Tate). If A/F is a simple abelian variety over a number
field F and l is a prime number, then for every 0 ≤ p ≤ g the cycle map induces
an isomorphism:

(7.33) Ap(A)⊗Q Ql ∼= H2p
et (A; Ql(p))

GF

where A = A⊗F F .

Theorem 7.34. The Hodge conjecture holds true for abelian varieties of class
A.

Proof. By [Mu], Theorem 3.1 the Hodge conjecture follows from the equality
(7.20) of Corollary 7.19. �

Theorem 7.35. The Tate conjecture holds true for abelian varieties of class
A.

Proof. It is known (see Proposition 8.7 of [C1]) that Mumford-Tate conjec-
ture implies the equivalence of Tate and Hodge conjectures. Hence the Tate
conjecture follows by Theorems 7.12 and 7.34. �

Conjecture 7.36 (Lang). Let A be an abelian variety over a number field
F. Then for l ≫ 0 the group ρl(GF ) contains the group of all homotheties in
GLTl(A)(Zl).

Theorem 7.37 (Wintenberger [Wi], Cor. 1, p. 5). Let A be an abelian
variety over a number field F . The Lang conjecture holds for such abelian
varieties A for which the Mumford-Tate conjecture holds or if dimA < 5.

Theorem 7.38. The Lang’s conjecture holds true for abelian varieties of class
A.

Proof. It follows by Theorem 7.12 and Theorem 7.37. �

We are going to use Theorem 7.12 and Corollary 7.19 to prove an analogue of
the open image Theorem of Serre cf. [Se8]. We start with the following remark
which is a plain generalization of remark 7.3.

Remark 7.39. Let B1 ⊂ B2 be two commutative rings with identity. Let Λ be
a free, finitely generated B1-module such that it is also an R-module for a B1-
algebra R. Let G be a B1-group subscheme of GLΛ. Then CR(G) will denote the
commutant of R in G. The symbol C◦

R(G) will denote the connected component
of identity in CR(G). Let β : Λ× Λ → B1 be a bilinear form and let G(Λ,β) ⊂
GLΛ be the subscheme of GLΛ of the isometries with respect to the form β.
Then we check that CR(G(Λ,β))⊗B1

B2
∼= CR⊗B1

B2
(G(Λ⊗B1

B2, β⊗B1
B2)).
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Consider the bilinear form:

(7.40) ψ : Λ× Λ → Z

associated with the variety A. Abusing notation sligthly, we will denote by ψ
the Riemann form ψ ⊗Z Q, i.e., we put:

ψ : V × V → Q.

Consider the group scheme CR(Sp(Λ, ψ)) over SpecZ. Since CR(Sp(Λ, ψ)) ⊗Z

Q = CD(Sp(V, ψ)) (see Remark 7.39), there is an open imbedding in the l-adic
topology:

(7.41) CR(Sp(Λ, ψ))(Zl) ⊂ CD(Sp(V, ψ))(Ql).

Note that the form ψl of (4.1) is obtained by tensoring (7.40) with Zl.

Theorem 7.42. If A is an abelian variety of class A, then for every prime
number l, ρl(GF ) is open in the group

CR(GSp(Λ, ψ))(Zl) = CR⊗ZZl
(GSp(Tl(A), ψl))(Zl).

In addition, for l ≫ 0 we have:

(7.43) ρl(G′
F ) = CR(Sp(Λ, ψ))(Zl).

Proof. For any ring with identity R the group GSp2g(R) is generated by sub-
groups Sp2g(R) and

{

(

aIg 0
0 Ig

)

; a ∈ R×}.

One checks easily that the group Z×
l Sp2g(Zl) has index 2 (index 4 resp.)

in GSp2g(Zl), for l > 2 (for l = 2 resp.). Here the symbol Z×
l stands

for the subgroup of homotheties in GL2g(Zl). Since by assumption A has
a principal polarization, Sp2g(Zl) ∼= Sp(Λ, ψ))(Zl). By [Bo], Cor. 1. on

p. 702, there is an open subgroup U ⊂ Z×
l such that U ⊂ ρl(GF ).

Hence U CR(Sp(Λ, ψ))(Zl) = CR(U Sp(Λ, ψ)(Zl)) is an open subgroup of
CR(GSp(Λ, ψ))(Zl) = CR(GSp(Λ, ψ)(Zl)). By [Bo], Th. 1, p. 701, the group

ρl(GF ) is open in Galgl (Ql). By Theorem 7.12, Corollary 7.19 and Remark 7.3

U CR(Sp(Λ, ψ))(Zl) ⊂ Q×
l CD(Sp(V, ψ))(Ql) =

(7.44) = Gm(Ql)H(A)(Ql) ⊂MT (A)(Ql) = Galgl (Ql).
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Hence, U CR(Sp(Λ, ψ))(Zl) ∩ ρl(GF ) is open in U CR(Sp(Λ, ψ))(Zl) and we get
that ρl(GF ) is open in CR(GSp(Λ, ψ))(Zl). Using Remark 7.39 and the univer-
sality of the fiber product, we observe that

(7.45) CR(Sp(Λ, ψ))(Zl) = CR⊗ZZl
(Sp(Tl(A), ψl))(Zl).

For l ≫ 0 we get

CR⊗ZZl
(Sp(Tl(A), ψl))

∼= CR⊗ZZl
(COE⊗ZZl

(Sp(Tl(A), ψl)))
∼=

(7.46) ∼= CR⊗ZZl
(
∏

λ|l

ROλ/Zl
(Sp(Tλ(A), ψλ))).

Evaluating the group schemes in (7.46) on SpecZl we get

CR⊗ZZl
(Sp(Tl(A), ψl))(Zl)

∼= CR⊗ZZl
(
∏

λ|l

ROλ/Zl
(Sp(Tλ(A), ψλ)))(Zl)

∼=

(7.47) ∼=
∏

λ|l

CRλ
Sp(Tλ(A), ψλ)(Oλ) ∼=

∏

λ|l

Sp(Tλ, ψλ)(Oλ) ∼=
∏

λ|l

Sp2h(Oλ).

Hence by (7.45), (7.46), (7.47), (6.18) and Theorem 7.38, we conclude that for
l ≫ 0 the equality (7.43) holds. �

Theorem 7.48. If A is an abelian variety of class A, then for every prime

number l, the group ρl(GF ) is open in the group Galgl (Zl) in the l-adic topology.

Proof. By Theorem 7.42 the group ρl(GF ) is open in CR⊗ZZl
(GSp(Tl(A), ψl))(Zl)

in the l-adic topology, so ρl(GF ) has a finite index in the group

CR⊗ZZl
(GSp(Tl(A), ψl))(Zl). By the definition of Galgl , we have:

ρl(GF ) ⊂ Galgl (Zl) ⊂ CR⊗ZZl
(GSp(Tl(A), ψl))(Zl).

Hence, ρl(GF ) has a finite index in Galgl (Zl), and the claim follows since
CR⊗ZZl

(GSp(Tl(A), ψl))(Zl) is a profinite group. �
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Collège de France (1985-1986), 95-100.
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